Water specifications
Every manufacturer has specific requirements for water quality. Check with the manufacturer to get the specifications for your particular machine.
The water supplied to the intensifier is critical to waterjet cutting due to its direct influence on the service life of the equipment components such as check valves, seals and orifices. A high concentration of Total Dissolved Solids (TDS) causes accelerated wear of any components that come in contact with the high pressure water because of the increased abrasiveness of the water from the TDS.
As part of the installation planning, a water quality analysis should be performed by a commercial company that specializes in water conditioning equipment. The minimum information that should be supplied by this analysis is TDS, silica content and pH value. Companies like Culligan can perform these tests, or you can search "water quality testing" on the internet.
Total Dissolved Solids, Silica Content and pH value is the minimum information that should be supplied.
Inlet water should be treated for either the removal of hardness of the reduction of TDS. Water softening is an ion exchange process that removes scale forming minerals such as calcium. TDS reduction can be accomplished with either deionization (DI) or reverse osmosis equipment. Generally, DI or RO provides better component life than water softening.
A water purification supplier should be consulted to supply the most suitable equipment for special conditions. It might be a good idea to ask any company that you are considering using if they have supplied systems for any other high pressure waterjet cutting systems and check their references.
The best treatment process for a specific application is a function of the original water quality and the desired service life of the affected components. Sixty to 70 ppm of TDS is optimum. Any water treatment producing TDS content of less than 0.5 part per million (ppm) should be avoided since the aggressiveness of such purified water will damage pump components.
Water treatment guidelines
Criteria |
Values |
Recommended Treatment |
Total Dissolved Solids (TDS) |
Low TDS (<100 ppm) Moderate TDS (100 - 200 ppm) High TDS (>200 ppm) |
Good water, requires only softening Can be treated by softening, DI or RO Poor water, should be treated with RO or DI |
Silica Content |
High content (>15 ppm) |
Dual Bed Strong Base DI |
pH Value |
Treated water must have a value of 6 - 8 |
Water specifications
Every manufacturer has specific requirements for water quality. Check with the manufacturer to get the specifications for your particular machine.
The water supplied to the intensifier is critical to waterjet cutting due to its direct influence on the service life of the equipment components such as check valves, seals and orifices. A high concentration of Total Dissolved Solids (TDS) causes accelerated wear of any components that come in contact with the high pressure water because of the increased abrasiveness of the water from the TDS.
As part of the installation planning, a water quality analysis should be performed by a commercial company that specializes in water conditioning equipment. The minimum information that should be supplied by this analysis is TDS, silica content and pH value. Companies like Culligan can perform these tests, or you can search "water quality testing" on the internet.
Total Dissolved Solids, Silica Content and pH value is the minimum information that should be supplied.
Inlet water should be treated for either the removal of hardness of the reduction of TDS. Water softening is an ion exchange process that removes scale forming minerals such as calcium. TDS reduction can be accomplished with either deionization (DI) or reverse osmosis equipment. Generally, DI or RO provides better component life than water softening.
A water purification supplier should be consulted to supply the most suitable equipment for special conditions. It might be a good idea to ask any company that you are considering using if they have supplied systems for any other high pressure waterjet cutting systems and check their references.
The best treatment process for a specific application is a function of the original water quality and the desired service life of the affected components. Sixty to 70 ppm of TDS is optimum. Any water treatment producing TDS content of less than 0.5 part per million (ppm) should be avoided since the aggressiveness of such purified water will damage pump components.
Water treatment guidelines
Criteria |
Values |
Recommended Treatment |
Total Dissolved Solids (TDS) |
Low TDS (<100 ppm) Moderate TDS (100 - 200 ppm) High TDS (>200 ppm) |
Good water, requires only softening Can be treated by softening, DI or RO Poor water, should be treated with RO or DI |
Silica Content |
High content (>15 ppm) |
Dual Bed Strong Base DI |
pH Value |
Treated water must have a value of 6 - 8 |